Primary Faculty Labs

Primary Faculty Labs

Soman N. Abraham Ph.D.

Abraham Lab

There are two major research areas being pursued in this laboratory. The first involves elucidating the role of mast cells in modulating immune responses to microbes. The second area of research investigates cross-talk between distinct infectious agents such as Uropathogenic E. coli, Salmonella typhimurium and Yersinia pestis and the immune system.

Learn More
Ming Chen, PhD

Ming Chen Lab

Our laboratory is interested in understanding the molecular and genetic events underlying cancer progression and metastasis. The focus of our work is a series of genetically engineered mouse models that faithfully recapitulate human disease. Using a combination of mouse genetics, omics technologies, cross-species analyses and in vitro approaches, we aim to identify cancer cell–intrinsic and –extrinsic mechanisms driving metastatic cancer progression, with a long–term goal of developing new therapeutic strategies for preventing and treating metastatic disease.

Learn More
Zhong Chen, PhD

Zhong Chen Lab

My long-term interest is to investigate potential molecular therapeutic targets required for the growth and progression of prostate cancer and other kinds of tumors. Through integrated multidisciplinary investigation, my ongoing studies are designed to reveal novel molecular mechanisms of transcriptional control in cancer and facilitate the discovery of potential therapeutic targets to improve the treatment of cancer.

Learn More

Everitt Lab

My expertise is in comparative research animal pathology and toxicologic pathology. My laboratory is interested in developing and characterizing animal models of human disease, particularly oncology and infectious disease models using genetically-modified rodents. I am also interested in how husbandry and environmental factors affect in vivo study data generated in research animals, and how to optimize animal studies for reproducibility. Key words:  Animal models, genetically-modified rodents, toxicologic pathology

Learn More

Hale Lab

The Hale laboratory employs techniques of cellular and molecular biology to study mechanisms responsible for the generation of both normal immune responses and immune-mediated diseases. Research in the laboratory is mainly focused on inflammatory bowel disease (IBD). Current work in the laboratory is aimed at understanding triggers of intestinal inflammation and mechanisms of inflammation-associated neoplasia, in addition to developing novel therapies for IBD treatment. Ongoing research also includes investigating mechanisms that determine the immunogenicity of oral antigens, to develop novel adjuvants for oral vaccines. This work has relevance for pathogenesis and treatment of infectious diseases affecting the gastrointestinal tract, as well as for inflammatory bowel disease.

Learn More

He Lab

Our laboratory focuses on developing and applying genetic approaches for identifying new cancer genes and studying their functions (Key word: cancer genetics and epigenetics, brain tumor, prostate cancer).

Learn More

Hoffman Lab

Our laboratory studies mechanisms of hemostasis. This work led to the development of a cell-based model of coagulation that is more physiologically relevant than the earlier "cascade” model.   We have used cell-based conceptual and experimental models to understand mechanisms by which drugs can enhance hemostasis and prevent thrombosis, with a goal of designing better therapeutic strategies.  In addition, we are studying how products of the coagulation process influence inflammatory/immune responses, angiogenesis, and tissue repair.

 

Learn More

Hu Lab

Research Interest:  1) develop combination therapy for castration-resistant prostate cancer and small cell neuroendocrine carcinoma and investigate the underlying molecular mechanisms;  2) study the role of ATM-mediated DNA damage response in tumorigenesis and therapy resistance;  3) investigate the function of microRNAs in tumor progression and metastasis with focus on DNA damage-related microRNAs.

Learn More

Huang Lab

The major focus of Dr. Jiaoti Huang's laboratory is the study of prostate cancer. We are interested in different aspects of prostate cancer, including the molecular mechanisms of carcinogenesis, biomarkers, histological diagnosis, immunohistochemical profiles, the mechanism of tumor progression to the castration-resistant stage, and novel therapeutic strategies.

Learn More
Everardo Macias PhD

Macias Lab

The overarching goal of the Macias lab is to gain basic mechanistic insights into clinically relevant actionable molecular targets with the eventual goal of aiding to reduce prostate cancer-specific mortality. Our group integrates human cancer genomic data, functional genomic loss of function screens and pre-clinical in vitro and in vivo mouse models in order to identify, prioritize and validate potential therapeutic targets.

Learn More
Salvatore Pizzo, MD PhD

Pizzo Lab

Our laboratory has historically studied proteinases and their regulation by the plasma proteinase inhibitor α2-macroglobulin (α2M).  Studies from this laboratory identified cell surface expression of the molecular chaperone GRP78 as a major factor in prostate cancer and other malignancies.  Cell surface GRP78 functions as a signaling receptor promoting tumor proliferation and suppressing apoptosis.  Patients with a number of malignancies mount an autoimmune response to GRP78 and these antibodies, which bind to the NH2 terminal domains of GRP78, are receptor agonists whose appearance is a marker of poor prognosis.  More recently, we have shown that antibodies directed against the COOH-terminal domain of GRP78 are receptor antagonists which may have therapeutic potential for treating patients whose tumors express GRP78 on the cell surface.

Learn More

Staats Lab

Our laboratory studies methods to induce and regulate antigen-specific immune responses at the mucosal surfaces of the host. The mucosal tissues and surfaces are often the first site of contact with infectious agents, a common location of life-threatening cancers and in constant contact with environmental antigens. A better understanding of factors that control the induction and regulation of mucosal immune responses may aid the development of vaccines and treatments for infectious agents such as HIV and agents of bioterrorism, cancers and environmental allergies.

Learn More

Sunday Lab

We are studying mechanisms of injury mediated by O2-sensing pulmonary neuroendocrine cells, especially gastrin-releasing peptide (GRP). GRP secretion is induced by O2-related (oxidant) injury, leading to acute and chronic lung injury and pulmonary fibrosis (PF). Our key model is PF due to ionizing radiation to the thorax. This is clinically relevant to PF triggered by many environmental exposures or autoimmune diseases, as well as idiopathic pulmonary fibrosis (IPF). There is no cure for PF. We seek to reverse fibrotic responses in lung.

Learn More
Wang_Qianben

Wang Lab

The Wang Laboratory is primarily interested in understanding the epigenetic mechanisms driving progression of hormone-dependent cancers. We focus on studying how transcription factor-centered, multi-layer transcription regulatory networks drive hormone-dependent cancers, which involve transcription factors (e.g. nuclear hormone receptors, FOXA1, and GATA2), transcription coactivators (e.g. Mediator and histone acetyltransferases), and epigenetic regulators (e.g. histone modifications, chromatin looping and nucleosome positioning).

 

Learn More

Yan Lab

Our research activities center on the molecular genetics and biology of cancer with a focus on the identification, characterization, and therapeutic targeting of driver mutations involved in the genesis and progression of brain cancers. Gliomas are the most common type of primary brain tumor. Through genomic studies, we have identified mutations in IDH1 and IDH2 in 70% of progressive malignant gliomas. These are somatic missense mutations that alter a conserved arginine residue and gain a 

Learn More